Additional Reference ======================== Additional references that might be helpful to understand the hyperparameter optimization and the coding provided in this documentation. ------------------------ Documentations ------------------------ Here are the URLs for the documentation of the libraries and algorithms used in this research, covering mathematical tools, plotting tools, and optimization algorithms: - **Numpy** : https://numpy.org/ - **Pandas** : https://pandas.pydata.org/ - **Hpbandster**: https://automl.github.io/HpBandSter/build/html/quickstart.html - **Ax** : https://ax.dev/ - **Matplotlib** : https://matplotlib.org/ - **Scipy** : https://scipy.org/ - **Sklearn** : https://scikit-learn.org/stable/ - **Tensorflow** : https://www.tensorflow.org/ ------------------------ Papers ------------------------ There are three papers and one Master’s thesis published on hyperparameter optimization (HPO), listed chronologically from oldest to newest. - **First Paper** : Jeong, T., Koratikere, P., & Leifsson, L. T. (2024). Automated Hyperparameter Tuning for Airfoil Shape Optimization with Neural Network Models. In AIAA SCITECH 2024 Forum (p. 2671). https://doi.org/10.2514/6.2024-2671 - **Second Paper** : Jeong, T., Koratikere, P., Leifsson, L., Koziel, S., & Pietrenko-Dabrowska, A. (2024, June). Adaptive Hyperparameter Tuning Within Neural Network-Based Efficient Global Optimization. In International Conference on Computational Science (pp. 74-89). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-63775-9_6 - **Master's Thesis** : `Taeho Jeong's Thesis `_. - **Third Paper** (Not yet published): Jeong, T., Koratikere, P., & Leifsson, L. T. (2024). Adaptive Hyperparameter Optimization Strategies for Neural Network Models in Engineering Design Optimization